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Introduction

In 1940s, the entire glycolytic pathway was elucidated. 
Lactic acid has been known as a product of glycolysis 
during hypoxia (1). It has been recognized as a metabolite 
associated with sepsis and with tissue hypoxia for a long 
time (2). However, a number of studies have suggested that 
lactate formation during sepsis is due to not only hypoxia 
but also metabolic processes (3,4). Lactic acidosis results 
from the accumulation of lactate and protons in the body 
fluids and is often associated with poor clinical outcomes (5).  

Moreover,  lactate is  a  parameter of  global  t issue 
hypoperfusion and is essential in identifying patients with 
“cryptic” shock who require focused early goal-directed 
therapy (EGDT) (6,7). Most of the lactate produced in 
shock state is due to inadequate oxygen delivery resulting 
in tissue hypoxia and causing anaerobic glycolysis. 
Moreover, a hypermetabolic state, with glycolysis enhanced 
by catecholamines, contributes to the accumulation of 
lactate (4). Thus, hyperlactatemia and lactic acidosis are 
common in patients with septic shock and are associated 
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with significant morbidity and mortality (2). As a result, the 
Third International Consensus Definitions for Sepsis and 
Septic Shock (Sepsis-3) has included hyperlactatemia over  
2 mmol/L in the revised definition of septic shock (8). Since 
three independent international multicenter randomized 
controlled trials (ProCESS, ARISE, and ProMISe) 
confirmed that EGDT did not confer a mortality benefit 
compared with usual resuscitation, the Surviving Sepsis 
Campaign (SSC) focused on implementing the lactate-
guided sepsis management bundle (9-12). The campaign 
guideline suggests guiding resuscitation to normalize lactate 
in patients with elevated lactate levels (12). A few recent 
studies showed that an early lactate clearance strategy and 
a lactate-guided resuscitation reduced mortality in patients 
with sepsis and septic shock (7,13-15). This study aimed to 
review the clinical aspect of lactic acidosis in patients with 
sepsis and septic shock.

Lactic acid formation and clearance

Lactic acid is normally produced in excess by about  
20 mmol/kg/day, which enters the bloodstream (16,17). 
The tissues that normally produce excess lactic acid include 
the skin, red cells, brain tissue, muscles, and gastrointestinal 
tract. During heavy exercise, the skeletal muscles produce 
most of the excess lactic acid (17). Moreover, the lungs 
can produce lactate during acute lung injury without 
tissue hypoxia, and leukocytes generate lactate during 
phagocytosis or when activated in sepsis (18-20). In 
pathological conditions in which oxygen delivery is limited, 
lactate production occurs in other tissues (2).

Lactate is formed from pyruvate in the cytosol as part 
of glycolysis. Its concentration is in equilibrium with that 
of pyruvate and is maintained by lactate dehydrogenase 
(LDH), an enzyme that favors lactate production and 
normally maintains a constant lactate to pyruvate ratio 
of approximately 10:1 (21). Therefore, lactate increases 
when the production of pyruvate exceeds its utilization 
in the mitochondria. Pyruvate is essentially produced via 
glycolysis; hence, any increase in glycolysis, regardless of 
its origin, can increase lactatemia (4). Meanwhile, pyruvate 
is essentially metabolized to acetyl coenzyme A (acetyl-
CoA) by pyruvate dehydrogenase (PDH), which enters the 
tricarboxylic acid (TCA) cycle under aerobic conditions (2). 
The TCA cycle also called Krebs cycle. Under anaerobic 
conditions, the Krebs cycle cannot metabolize pyruvate; 
thus, pyruvate is shunted toward lactate (Figure 1) (2).

Lactate can be metabolized by the liver and kidneys 
either by direct oxidation or as a source of glucose (21). 
Generated lactate can be transformed into oxaloacetate or 
alanine via the pyruvate pathway or can be utilized directly 
by periportal hepatocytes (60%) to produce glycogen 
and glucose (neoglycogenesis and neoglucogenesis; Cori 
cycle) (4). Furthermore, the kidneys participate in 30% 
of lactate metabolism, with the cortex classically acting as 
the metabolizer by neoglucogenesis and the medulla as a 
producer of lactate (4).

Lactate is not only transformed into glucose via the 
Cori cycle, it is also removed through oxidation (22). 
This oxidative compartment which is likely close to the 
mitochondria is considered responsible for lactate uptake by 
mono-carboxylate transporter (MCT) into mitochondria and 
oxidation via pyruvate and the Krebs cycle with adenosine 
triphosphate (ATP) production (3). This intracellular lactate 
shuttle balances the lactate level between producing by 
glycolysis and clearance by oxidation (21) (Figure 1).

Figure 1 Glucose metabolism producing pyruvate and lactate. 
Glucose is converted to pyruvate in the cytosol as part of 
glycolysis. In aerobic conditions, pyruvate is transported into the 
mitochondria through MCT, while phosphate dehydrogenase and 
thiamine diphosphate are converted into acetyl-CoA to produce 
ATP via Krebs cycle, which is also called TCA cycle. In anaerobic 
conditions, Krebs cycle activity is reduced, thus, this allows the 
LDH to enhance lactate formation in the cytosol. Excess lactate 
is transported into the mitochondria again through MCTs and is 
oxidized to pyruvate in the Krebs cycle pathway. MCT, mono-
carboxylate transporter; ATP, adenosine triphosphate; LDH, 
lactate dehydrogenase; TCA, tricarboxylic acid.
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The role of lactic acid

In addition of glucose metabolism, lactate plays a crucial 
role in various functions of the neurologic system, cancer 
metabolism, in various functions of the immune system, 
wound healing, and ischemic injuries (1).

Aerobic glycolysis in the brain is very important process 
in gene expression of neonate (23) and is connected to 
the development of synapses, neuron projections, and 
learning (24). Specifically, lactic acid which comes from 
glycolysis in astrocytes is entered to neurons through 
MCTs. And it plays a signaling function and stimulation 
of gene expression, which can lead to a long-term memory 
formation (25). Moreover, chronic stress is associated with 
sustained elevation of cyclic adenosine monophosphate 
(cAMP) and cognitive impairment (26). Lactate could 
potentially modulate the over-activated signaling cascades 
by reducing cAMP, thus preventing memory loss and 
enhancing neuronal protection (1).

Cancer cells, especially rapid growing type, are known 
to use an aerobic glycolysis which called Warburg effect. 
Lactic acid surrounding the tumor tissues can reach up to  
40 mmol/L, and lactic acidosis in cancer patients is correlated 
with rapid cancer growth, metastasis, and poor survival (1,27). 
Moreover, lactic acid contributes to the reduced immunity 
of the tumor-infiltration host inflammatory cells such as 
macrophages and lymphocytes (28-30).

Lactic acid can modulate inflammation and promote 
immune tolerance (1). Lactic acid increases cellular 
production of anti-inflammatory cytokines such as 
interleukin-10 (1,31). On the other hand, it reduces 
the activities of pro-inflammatory cytokines such as 
interleukin-12, macrophages, natural killer cells, and tumor 
necrosis factors (32,33). Aerobic glycolysis is prominently 
involved in wound healing. Lactic acid around the healing 
wounds would reach between 5 and 15 mmol/L (34-36). 
When acute tissue ischemia occur ischemia-induced lactic 
acid formation is an important cellular response and which is 
activated by the plasma membrane sodium proton exchanges 
(37,38). It increases intracellular sodium, and it leads to 
calcium overload via calcium-sodium exchange and inducing 
cell death (1,39). In the setting of sepsis related lactic acidosis, 
animals which pretreated with sodium-proton exchanger 
blockers develop less hemodynamic instability and better 
survival compared with non-treated control groups (40,41).

Hyperlactatemia in sepsis and septic shock

Hyperlactatemia in sepsis and septic shock occurs as a result 

of tissue hypoxia, in which the whole body oxygen delivery 
fails to meet the whole body oxygen requirements (2,42). 
Therefore, increased blood lactate concentration indicates 
anaerobic metabolism and tissue hypoxia. It follows from 
this reasoning that patients with an elevated blood lactate 
level should be treated by increasing oxygen delivery (21). 
Although enough oxygen was delivered to the tissues, in the 
setting of tissue oxygen extraction impairment, anaerobic 
metabolism generates lactate. Normally, most tissues can 
extract as much as 70% of the delivered oxygen before 
anaerobic metabolism. However, in sepsis and septic shock 
state, this critical oxygen extraction ratio is decreased 
to 50% or less so that lactic acid formation increases at 
oxygen deliveries that would normally be sufficient to 
meet the aerobic oxygen demand (2,43). Microcirculatory 
dysfunction, which impairs oxygen delivery to the tissues, 
and mitochondrial dysfunction, which impairs oxygen 
utility, occur in patients with sepsis so that, even in an 
adequate oxygenation, anaerobic metabolism occurs and 
pyruvate is shunted toward lactate production (2,21).

Endogenous and exogenous catecholamines are highly 
associated with lactic acid production in sepsis and septic 
shock (21). Because aerobic glycolysis is stimulated by 
high levels of circulating epinephrine. By binding to 
the β2-adrenergic receptor on the plasma membrane, 
epinephrine increases the glycolytic flux both directly and 
by stimulation of the ubiquitous adenosine triphosphatase 
sodium/potassium pump (Na+/K+-ATPase) and the 
resultant consumption of ATP (2,4,5,44). Thereby, ATP 
consumption generates adenosine diphosphate (ADP) 
via phosphofructokinase stimulation, thus reactivating 
glycolysis (4). Glycolytic flux can exceed the capacity of 
PDH to catalyze the conversion of pyruvate into acetyl-
CoA. Therefore, pyruvate is inevitably converted to lactate 
by LDH (Figure 2) (2).

Reduced lactate clearance enhanced hyperlactatemia. In 
sepsis patients whose vital signs were stable, hyperlactatemia 
might be induced by the dysfunction of hepatic lactate 
clearance, which is primarily due to PDH inhibition 
(2,45). In patients with sepsis and low-flow state, chronic 
liver disease further compromises lactate clearance 
(5,46). PDH converts pyruvate into acetyl-CoA, allowing 
pyruvate to enter the mitochondria. PDH activity was 
decreased in patients with septic muscle and is restored 
by dichloroacetate, decreasing lactatemia in patients with 
sepsis (4). However, chronic liver disease alone causes only 
minimal hyperlactatemia, and kidney failure adds to the 
impairment in lactate clearance (5).
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Role of lactic acid: prognosis marker of sepsis 
and septic shock

Lactic acidosis results from the accumulation of lactate 
and protons in the body fluid (5). However, glycolytic flux 
from glucose to pyruvate generates H+, but conversion 
of pyruvate to lactate consumes the molar equivalent H+ 
flux; therefore, increased generation of lactate resulting 
in hyperlactatemia is not, by itself, acidosis, but ATP 
hydrolysis is the major generator of H+ and becomes the 
source of acidosis (2).

Regardless of the source, increased lactate levels have 
been associated with worse outcomes (17). Moreover high 
initial lactate level as well as longer normalization time was 
associated with increased hazard of mortality (47). Lactic 
acidosis can cause a reduction of cardiac contractility and 
vascular hypo-responsiveness to vasopressors through 
various mechanisms. It is a precipitator of mortality and 
contributes to a worsening of underlying comorbidities (17). 
In normotensive patients with sepsis, a lactate concentration 
more than 4 mmol/L was found to be independently 
correlated with higher mortality and therefore needs 
urgent recognition and proper resuscitation (48). However, 
patients with septic shock with intermediate concentrations 

of lactate (2–4 mmol/L) have poorer prognosis than those 
with normal lactate concentration (49). Moreover, in the 
severity score, lactate weighted scoring system discriminated 
mortality significantly than others such as sequential organ 
failure assessment score (50).

In the Third International Consensus Definitions for Sepsis 
and Septic Shock, elevated lactate level was included as the 
third important variable along with hypotension and sustained 
need for vasopressor therapy to define septic shock (8).  
The risk adjusted hospital mortality was significantly higher in 
patients with fluid-resistant hypotension requiring vasopressors 
and hyperlactatemia compared with those with either 
hyperlactatemia alone or with fluid resistant hypotension 
requiring vasopressors but with a lactate level of <2 mmol/L (8).

Role of lactic acid: lactate-guided septic shock 
management

Since the time Rivers et al. first proposed EGDT, central 
venous oxygen saturation (ScvO2) has been widely used as 
a surrogate marker of the balance between oxygen delivery 
and consumption (6,51). Moreover, lactate is a useful 
biomarker of tissue hypoxia and anaerobic metabolism, 

Figure 2 Catecholamine-induced glycolytic flux. Circulatory endogenous and exogenous catecholamines bind to β2-adrenergic receptor 
in the cell membrane. It increases the production of cyclic AMP (cAMP) and stimulates both direct glycogenolysis, indirectly enhancing 
glycolysis through ATP sodium/potassium (Na+/K+-ATPase) pump activation. This activation requires ATP consumption, and generated 
ADP reactivates glycolysis, increasing pyruvate and lactate production. ATP, adenosine triphosphatase; ADP, adenosine diphosphatase.
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reflecting disease severity and lactate clearance, and can 
be used as a therapeutic target instead of ScvO2 (51,52). 
However, current clinical trials have shown that EGDT 
targeting ScvO2 fails to improve outcomes compared with 
usual therapy or lactate-based protocols (9-11,51).

Recent  SSC gu ide l ine  recommended  gu id ing 
resuscitation to normalize lactate in patients with elevated 
lactate levels, a marker of tissue hypoperfusion (12). Since 
2013, they recommended bundle therapy for sepsis and 
septic shock; it consisted of four components that should 
be performed within 3 hours and three components that 
should be performed within 6 hours. The 3-hour bundle 
recommended the measurement of lactate levels, while the 
6-hour bundle recommended the re-measurement of lactate 
if the initial lactate level was elevated (53). 

The Sepsis-3 task force recommended that the 
monitoring of lactate should not be used as a guide to 
evaluate patient’s therapeutic response or should not be 
used as an indicator of illness severity. They recognized 
that serum lactate measurements are commonly, but not 
universally, available, especially in developing countries (8).  
However, there were five randomized controlled trials 
with 647 patients, which have evaluated the lactate-guided 
resuscitation of patients who had septic shock (7,13,14,52,54). 
Results showed that mortality was reduced in patients who 
received lactate-guided resuscitation compared with those 
who received resuscitation without lactate monitoring [risk 
ratio, 0.67; 95% confidence interval (CI), 0.53–0.84] (12). 
Two other meta-analyses of 647 patients demonstrated a 
moderate evidence of decreasing mortality in lactate guiding 
resuscitation strategy, compared with either usual critical 
care or with ScvO2 guiding strategy (15,55).

Lactate versus lactate clearance in patients 
with sepsis and septic shock

Repeated measurements of blood lactate levels after 
quantitative resuscitation can serve as a surrogate marker of 
patient’s response to therapy and may be more predictive 
of mortality than the initial lactate value. While the 
current surviving sepsis guidelines recommended the re-
measurement of lactate levels within 6 hours if the initial 
lactate levels were elevated, no study has yet examined which 
time point is the most significant prognostic value of lactate 
from the recognition of shock at the emergency department 
in patients with septic shock. Nguyen et al. re-measured the 
lactate levels of patients 6 hours after the initial lactate level 
check and found that an optimal cutoff lactate clearance 

<10% had a sensitivity of 44.7% and specificity of 84.4% 
for predicting in-hospital mortality (56). Several studies 
also reported about lactate kinetics and clearance. These 
studies showed that lactate clearance greater than 10%, 
based on the initial measurement obtained during the first 
2 to 6 hours of resuscitation, predicted survival in patients 
with septic shock (56-58). Moreover, it was demonstrated 
that for every 10% increase in lactate clearance, there was a 
corresponding 11% decrease in in-hospital mortality (56). 
In general, <10% of lactate clearance 6 hours from initial 
resuscitation was an independent predictor of in-hospital 
mortality (57,59). There was a systemic review and meta-
analysis about lactate clearance and mortality in critically 
ill patients. They show that lactate clearance is strongly 
associated with all-cause mortality and rapid clearance is 
a strong predictor of survivor (60). However, there is not 
enough evidence to suggest a specific cutoff value of lactate 
clearance for resuscitation target goal, because among the 
recent studies there was a significant heterogeneity such as 
different time point and severity. Thus, we recommend to 
the clinicians to follow the current guidelines implementing 
a guided resuscitation to normalize lactate levels in 
patients with septic shock, although it supported with weak 
recommendations and low-quality evidence.

Marty et al. measured the lactate levels at time 0 (T0), 
T6, T12, and T24 and showed that the best predictor of 
death was the T24 clearance (61). Similarly, Herwanto 
et al. investigated the role of 6-, 12-, and 24-h lactate 
clearance in patients with sepsis and septic shock and 
showed only the 24-h lactate clearance measurement to 
be associated with mortality (62). Chertoff et al. reported 
that there was a delay in lactate clearance measurement 
24–48 hours after initial resuscitation and that the 
median clearance of 31.6% was significantly associated 
with mortality (63). Although some changes in lactate 
kinetics were clearly significant within 6 to 24 hours after 
resuscitation, it is currently not possible to define the best 
time interval between lactate measurements (64).

Furthermore, the interesting issue is whether lactate 
or lactate clearance is more useful in guiding septic shock 
management. Lokhandwala et al. presented that sensitivity 
and specificity were significantly different when comparing 
subsequent lactate levels less than the recommended level 
vs. <10% lactate reduction in the non-vasopressor therapy 
hyperlactatemia group; however, unlike the complete cohort, 
no statistical difference was found when comparing a <20% 
lactate reduction to either of the previous metrics (65).  
Table 1 shows a comprehensive summary of the reports 
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regarding the roles of lactate as a prognostic indicator of 
sepsis and septic shock (7,56,57,59,61,63-67).

After the release of Sepsis-3, our knowledge on the 
prognostic value of lactate kinetics in patients with septic 
shock (12) remained insufficient as data on the prognostic 
value of lactate levels and clearance in patients with septic 
shock is limited. Thus, further research is needed to 
determine the prognostic value of lactate or lactate kinetics 
in patients with septic shock, as defined by Sepsis-3.

Sepsis and septic shock management enhancing 
lactate clearance

The important management of lactic acidosis is to treat 
the underlying cause. Thus, sepsis should be treated 
immediately by early administration of appropriate 
antibiotics and infection source control (2). 

To reduce lactate production, the macro-circulatory 
oxygen delivery should improve first. The oxygen delivery 
depends on the patient’s cardiac output, hemoglobin, 
and oxygen saturation. Adequate volume resuscitation 
using inotropes, red blood cell transfusion, and provision 
of adequate oxygen supply are essential (2). The use 
of catecholamine should be limited as stimulation of 
β-adrenergic receptors increases glycolytic flux (44). In 
patients with septic shock, reduction of the norepinephrine 
dose by adding a low-dose vasopressin improved survival 
by 10% in patients initially receiving <15 μg/min 
norepinephrine in the vasopressin and septic shock trial (68). 
To reduce lactate production caused by overstimulation of 
the respiratory muscles, a mechanical ventilator support is 
required and sometimes neuromuscular blocker may help 
too (2).

To increase lactate removal, hepatic function should be 
preserved and monitored. Evidence of decreased hepatic 
function should be sought, and reversible contributors 
to hepatic dysfunction should be treated (2). In addition, 
potential hepatotoxins or renal toxins should be avoided. 
Continuous renal replacement therapy can be performed 
in critically ill patients with severe lactic acidosis and acute 
kidney injury (69). Sodium bicarbonate administration 
should be avoided, because it increases carbon dioxide 
production and decreases serum ionized calcium, which 
may decrease ventricular and vascular contractility (2). 

Inducing a pyruvate metabolism in Krebs cycle 
decreases serum lactate levels. Thiamine administration 
may enhance aerobic metabolism by converting pyruvate 
to acetyl-CoA (70). Moreover, dichloroacetate lowers 

lactate concentrations and improves acidemia when 
oxygen is available by enhancing the activity of PDH. 
However,  i t  does  not  improve the hemodynamic 
parameters or survival (71).

Conclusions

In patients with sepsis and septic shock, hyperlactatemia 
is promoted by glycolytic flux via anaerobic metabolism 
with tissue hypoxia, β-adrenergic receptor stimulation 
by endo/exogenous catecholamine, and decreased 
clearance due to hepatic and renal dysfunction. It reduces 
cardiac contractility and vascular hypo-responsiveness to 
vasopressors; however, it is closely associated with poor 
prognosis. Therefore, during sepsis and septic shock 
management, lactate levels should be re-measured and 
normalized. To normalize the lactate levels, we have to 
reduce glycolytic flux, enhance lactate removal, and induce 
pyruvate metabolism in the Krebs cycle. However, the most 
important treatment is to control the underlying infection.
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